使用PostgreSQL进行中文全文检索
2017-11-29

前言

PostgreSQL 被称为是“最高级的开源数据库”,它的数据类型非常丰富,用它来解决一些比较偏门的需求非常适合。

前些天将 POI 点关键词查询的功能迁到了 PgSQL,总算对前文 空间索引 - 各数据库空间索引使用报告 有了一个交代。

由于 PgSQL 国内的资料较少,迁移过程踩了不少坑,这里总结记录一下,帮助后来的同学能顺利使用 PgSQL。而且目前在灰度测试刚布了一台机器,后续可能还要添加机器,整理一下流程总是好的。



开始

安装

首先是安装 PgSQL,这里我使用的是 PgSQL 9.6,PgSQL 10 也刚发布了,有兴趣的可以尝下鲜。

PgSQL 的安装可以说非常复杂了,除了要安装 Server 和 Client 外,还需要安装 devel 包。为了实现空间索引功能,我们还要安装最重要的 PostGIS 插件,此插件需要很多依赖,自己手动安装非常复杂而且很可能出错。

推荐自动化方式安装,Yum 一定要配合 epel 这样的 Yum 源,保障能将依赖一网打尽。当然最好的还是使用 docker 来运行,找个镜像就行了。

插件

由于 PgSQL 的很多功能都由插件实现,所以还要安装一些常用的插件,如:

postgis_topology(管理面、边、点等拓扑对象)
pgrouting(路径规划)
postgis_sfcgal(实现3D相关算法)
fuzzystrmatch(字符串相似度计算)
address_standardizer/address_standardizer_data_us(地址标准化)
pg_trgm(分词索引)

这些插件在安装目录 /path/extensions 下编译完毕后,在数据库中使用前要先使用 create extension xxx 启用。

启动

  1. 切换到非 root 用户。(PgSQL 在安装完毕后会创建一个名为 postgres 的超级用户,我们可以使用这个超级用户来操作 PgSQL,后期建议重新创建一个普通用户用来管理数据);
  2. 切换到 /installPath/bin/ 目录下,PgSQL 在此目录下提供了很多命令,如 createdb、createuser、dropdb、pg_dump等;
  3. 使用 createdb 命令初始化一个文件夹 dir_db (此目录不能已存在)存放数据库物理数据,使用 -E UTF8 参数指定数据库字符集为 utf-8;
  4. 使用 pg_ctl -D dir_db 指定数据库启动后台服务;
  5. 使用 psql -d db 在命令行登陆 PgSQL;

配置

安装完毕后还要配置一些比较基本的参数才能正常使用。

Host权限

PgSQL需要在 pg_hba.conf 文件中配置数据库 Host 权限,才能被其他机器访问。

# TYPE  DATABASE        USER            ADDRESS                 METHOD
local   all             all                                     trust
host    all             all             127.0.0.1/32            md5
host    all             all             172.16.0.1/16            md5

文件中注释部分对这几个字段介绍得比较详细, 我们很可能需要添加 host(IP) 访问项, ADDRESS 是普通的网段表示法,METHOD 推荐使用 md5,表示使用 md5 加密传输密码。

服务器配置

服务器配置在 postgresql.conf中,修改配置后需要 使用 pg_ctl restart -D dir_db 命令重启数据库;

此外,我们也可以在登陆数据库后修改配置项:使用 SELECT * FROM pg_settings WHERE name = 'config'; 查询当前配置项,再使用 UPDATE 语句更新配置。但有些配置如内存分配策略是只在当前 session 生效的,全局生效需要在配置文件中修改,再重启服务器。

我们可以修改配置并用客户端验证 SQL 语句的优化,使用 \timing on 开启查询计时,使用 EXPLAIN ANALYSE 语句 分析查询语句效率。 下面介绍两个已实践过的配置参数:

  • shared_buffers:用于指定共享内存缓冲区所占用的内存量。它应该足够大来存储常使用的查询结果,以减少物理I/O。但它也不能太大,以避免系统 内存swap 的发生, 一般设置为系统内存的 20%。
  • work_mem:一个连接的工作内存,在查询结果数据量较大时,此值如果较小的话,会导致大量系统 I/O,导致查询速度急剧下降,如果你的 explain 语句内 buffer 部分 read数值过大,则表示工作内存不足,需要调整加此参数。但此值也不能太大,需要保证 work_mem * max_connections + shared_buffers + 系统内存 < RAM,不然同样可能会导致系统 内存swap。

这样,PgSQL 就能作为一个正常的关系型数据使用了。


分词

全文索引的实现要靠 PgSQL 的 gin 索引。分词功能 PgSQL 内置了英文、西班牙文等,但中文分词需要借助开源插件 zhparser;

SCWS

要使用 zhparser,我们首先要安装 SCWS 分词库,SCWS 是 Simple Chinese Word Segmentation 的首字母缩写(即:简易中文分词系统),其 GitHub 项目地址为 hightman-scws,我们下载之后可以直接安装。

安装完后,就可以在命令行中使用 scws 命令进行测试分词了, 其参数主要有:

  • -c utf8 指定字符集
  • -d dict 指定字典 可以是 xdb 或 txt 格式
  • -M 复合分词的级别, 1~15,按位异或的 1|2|4|8 依次表示 短词|二元|主要字|全部字,默认不复合分词,这个参数可以帮助调整到最想要的分词效果。

zhpaser

  1. 下载 zhparser 源码 git clone https:github.com/amutu/zhparser.git;
  2. 安装前需要先配置环境变量:export PATH=$PATH:/path/to/pgsql;
  3. make && make install编译 zhparser;
  4. 登陆 PgSQL 使用 CREATE EXTENSION zhparser; 启用插件;
  5. 添加分词配置

    CREATE TEXT SEARCH CONFIGURATION parser_name (PARSER = zhparser); // 添加配置
    ALTER TEXT SEARCH CONFIGURATION parser_name ADD MAPPING FOR n,v,a,i,e,l,j WITH simple; // 设置分词规则 (n 名词 v 动词等,详情阅读下面的文档)
  6. 给某一列的分词结果添加 gin 索引 create index idx_name on table using gin(to_tsvector('parser_name', field));

  7. 在命令行中使用上一节中介绍的 scws 命令测试分词配置,如我认为复合等级为 7 时分词结果最好,则我在 postgresql.conf添加配置

    zhparser.multi_short = true #短词复合: 1
    zhparser.multi_duality = true  #散字二元复合: 2
    zhparser.multi_zmain = true  #重要单字复合: 4
    zhparser.multi_zall = false  #全部单字复合: 8

SQL

查询中我们可以使用最简单的 SELECT * FROM table WHERE to_tsvector('parser_name', field) @@ 'word' 来查询 field 字段分词中带有 word 一词的数据;

使用 to_tsquery() 方法将句子解析成各个词的组合向量,如 国家大剧院 的返回结果为 '国家' & '大剧院' & '大剧' & '剧院' ,当然我们也可以使用 & | 符号拼接自己需要的向量;在查询 长句 时,可以使用 SELECT * FROM table WHERE to_tsvector('parser_name', field) @@ to_tsquery('parser_name','words');

有时候我们想像 MySQL 的 SQL_CALC_FOUND_ROWS 语句一样同步返回结果条数,则可以使用 SELECT COUNT(*) OVER() AS score FROM table WHERE ...,PgSQL 会在每一行数据添加 score 字段存储查询到的总结果条数;

到这里,普通的全文检索需求已经实现了。


优化

我们接着对分词效果和效率进行优化:

存储分词结果

我们可以使用一个字段来存储分词向量,并在此字段上创建索引来更优地使用分词索引:

ALTER TABLE table ADD COLUMN tsv_column tsvector;           // 添加一个分词字段
UPDATE table SET tsv_column = to_tsvector('parser_name', coalesce(field,''));   // 将字段的分词向量更新到新字段中
CREATE INDEX idx_gin_zhcn ON table USING GIN(tsv_column);   // 在新字段上创建索引
CREATE TRIGGER trigger_name BEFORE INSERT OR UPDATE  ON table FOR EACH ROW EXECUTE PROCEDURE
tsvector_update_trigger(tsv_column, 'parser_name', field); // 创建一个更新分词触发器

这样,再进行查询时就可以直接使用 SELECT * FROM table WHERE tsv_column @@ 'keyword' 了。

这里需要注意,这时候在往表内插入数据的时候,可能会报错,提示指定 parser_name 的 schema, 这时候可以使用 \dF 命令查看所有 text search configuration 的参数:

               List of text search configurations
   Schema   |    Name    |              Description
------------+------------+---------------------------------------
 pg_catalog | english    | configuration for english language
 public     | myparser   |

注意 schema 参数,在创建 trigger 时需要指定 schema, 如上面,就需要使用 public.myparser。

添加自定义词典

我们可以在网上下载 xdb 格式的词库来替代默认词典,词库放在 share/tsearch_data/ 文件夹下才能被 PgSQL 读取到,默认使用的词库是 dict.utf8.xdb。要使用自定义词库,可以将词库放在词库文件夹后,在 postgresql.conf 配置 zhparser.extra_dict="mydict.xdb" 参数;

当我们只有 txt 的词库,想把这个词库作为默认词库该怎么办呢?使用 scws 带的scwe-gen-dict 工具或网上找的脚本生成 xdb 后放入词库文件夹后,在 PgSQL 中分词一直报错,读取词库文件失败。我经过多次实验,总结出了一套制作一个词典文件的方法:

  1. 准备词库源文件 mydict.txt:词库文件的内容每一行的格式为词 TF IDF 词性,词是必须的,而 TF 词频(Term Frequency)、IDF 反文档频率(Inverse Document Frequency) 和 词性 都是可选的,除非确定自己的词典资料是对的且符合 scws 的配置,不然最好还是留空,让 scws 自已确定;
  2. 在 postgresql.conf 中设置 zhparser.extra_dicts = "mydict.txt" 同时设置 zhparser.dict_in_memory = true;
  3. 命令行进入 PgSQL,执行一条分词语句 select to_tsquery('parser', '随便一个词') ,分词会极慢,请耐心(请保证此时只有一个分词语句在执行);
  4. 分词成功后,在/tmp/目录下找到生成的 scws-xxxx.xdb 替换掉 share/tsearch_data/dict.utf8.xdb;
  5. 删除刚加入的 extra_dicts dict_in_memory 配置,重启服务器。

扩展

由于查询的是 POI 的名称,一般较短,且很多词并无语义,又考虑到用户的输入习惯,一般会输入 POI 名称的前几个字符,而且 scws 的分词准确率也不能达到100%,于是我添加了名称的前缀查询来提高查询的准确率,即使用 B树索引 实现 LIKE '关键词%' 的查询。这里需

这里要注意的是,创建索引时要根据字段类型配置 操作符类,不然索引可能会不生效,如在 字段类型为 varchar 的字段上创建索引需要使用语句CREATE INDEX idx_name ON table(COLUMN varchar_pattern_ops),这里的 varcharpatternops 就是操作符类,操作符类的介绍和选择可以查看文档:11.9. 操作符类和操作符族

自此,一个良好的全文检索系统就完成了。


总结

简单的数据迁移并不是终点,后续要做的还有很多,如整个系统的数据同步、查询效率优化、查询功能优化(添加拼音搜索、模糊搜索)等。特别是查询效率,不知道是不是我配置有问题,完全达不到那种 E级毫秒 的速度,1kw 的数据效率在进行大结果返回时就大幅下降(200ms),只好老老实实地提前进行了分表,目前百万级查询速度在 20ms 以内,优化还有一段路要走。

不过这次倒是对 技术的“生态”有了个更深的体会,这方面 PgSQL 确实和 MySQL 差远了,使用 MySQL 时再奇葩的问题都能在网上快速找到答案,而 PgSQL 就尴尬了,入门级的问题搜索 stackoverflow 来来回回就那么几个对不上的回答。虽然也有阿里的“德哥”一样的大神在辛苦布道,但用户的数量才是根本。不过,随着 PgSQL 越来越完善,使用它的人一定会越来越多的,我这篇文章也算是为 PgSQL 加温了吧,哈哈~希望能帮到后来的使用者。

关于本文有什么问题可以在下面留言交流,如果您觉得本文对您有帮助,可以点击下面的 推荐 支持一下我,博客一直在更新,欢迎 关注 。

参考:

PostgreSQL系统配置优化

[PG]使用 zhparser 进行中文分词全文检索

SCWS 中文分词

Fast Search Using PostgreSQL Trigram Indexes

使用阿里云PostgreSQL zhparser时不可不知的几个参数

德哥的PostgreSQL私房菜 - 史上最屌PG资料合集 

原文: http://www.cnblogs.com/zhenbianshu/p/7795247.html