使用C#编写TensorFlow人工智能应用
2017-10-15

TensorFlow简单介绍

TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍。

TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlow。任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分化(auto-differentiation)。通过灵活的Python接口,要在TensorFlow中表达想法也会很容易。

TensorFlow 对于实际的产品也是很有意义的。将思路从桌面GPU训练无缝搬迁到手机中运行。

示例Python代码:

import tensorflow as tf

import numpy as np


# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3

x_data = np.random.rand(100).astype(np.float32)

y_data = x_data * 0.1 + 0.3


# Try to find values for W and b that compute y_data = W * x_data + b

# (We know that W should be 0.1 and b 0.3, but TensorFlow will

# figure that out for us.)

W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))

b = tf.Variable(tf.zeros([1]))

y = W * x_data + b


# Minimize the mean squared errors.

loss = tf.reduce_mean(tf.square(y - y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)


# Before starting, initialize the variables.  We will 'run' this first.

init = tf.global_variables_initializer()


# Launch the graph.

sess = tf.Session()

sess.run(init)


# Fit the line.

for step in range(201):

    sess.run(train)

    if step % 20 == 0:

        print(step, sess.run(W), sess.run(b))


# Learns best fit is W: [0.1], b: [0.3]


 

使用TensorFlowSharp 

GitHub:https://github.com/migueldeicaza/TensorFlowSharp

官方源码库,该项目支持跨平台,使用Mono。

可以使用NuGet 安装TensorFlowSharp,如下:

Install-Package TensorFlowSharp

 

编写简单应用

使用VS2017新建一个.NET Framework 控制台应用 tensorflowdemo,接着添加TensorFlowSharp 引用。

TensorFlowSharp 包比较大,需要耐心等待。

然后在项目属性中生成->平台目标 改为 x64。

打开Program.cs 写入如下代码:

static void Main(string[] args)

        {

            using (var session = new TFSession())

            {

                var graph = session.Graph;

                Console.WriteLine(TFCore.Version);

                var a = graph.Const(2);

                var b = graph.Const(3);

                Console.WriteLine("a=2 b=3");


                // 两常量加

                var addingResults = session.GetRunner().Run(graph.Add(a, b));

                var addingResultValue = addingResults[0].GetValue();

                Console.WriteLine("a+b={0}", addingResultValue);


                // 两常量乘

                var multiplyResults = session.GetRunner().Run(graph.Mul(a, b));

                var multiplyResultValue = multiplyResults[0].GetValue();

                Console.WriteLine("a*b={0}", multiplyResultValue);

                var tft = new TFTensor(Encoding.UTF8.GetBytes($"Hello TensorFlow Version {TFCore.Version}! LineZero"));

                var hello = graph.Const(tft);

                var helloResults = session.GetRunner().Run(hello);

                Console.WriteLine(Encoding.UTF8.GetString((byte[])helloResults[0].GetValue()));

            }

            Console.ReadKey();

        }


运行程序结果如下:

 

TensorFlow C# image recognition

图像识别示例体验

https://github.com/migueldeicaza/TensorFlowSharp/tree/master/Examples/ExampleInceptionInference 

下面学习一个实际的人工智能应用,是非常简单的一个示例,图像识别。

新建一个 imagerecognition .NET Framework 控制台应用项目,接着添加TensorFlowSharp 引用。

然后在项目属性中生成->平台目标 改为 x64。

接着编写如下代码:

 

class Program

    {

        static string dir, modelFile, labelsFile;

        public static void Main(string[] args)

        {

            dir = "tmp";

            List<string> files = Directory.GetFiles("img").ToList();

            ModelFiles(dir);

            var graph = new TFGraph();

            // 从文件加载序列化的GraphDef

            var model = File.ReadAllBytes(modelFile);

            //导入GraphDef

            graph.Import(model, "");

            using (var session = new TFSession(graph))

            {

                var labels = File.ReadAllLines(labelsFile);

                Console.WriteLine("TensorFlow图像识别 LineZero");

                foreach (var file in files)

                {

                    // Run inference on the image files

                    // For multiple images, session.Run() can be called in a loop (and

                    // concurrently). Alternatively, images can be batched since the model

                    // accepts batches of image data as input.

                    var tensor = CreateTensorFromImageFile(file);


                    var runner = session.GetRunner();

                    runner.AddInput(graph["input"][0], tensor).Fetch(graph["output"][0]);

                    var output = runner.Run();

                    // output[0].Value() is a vector containing probabilities of

                    // labels for each image in the "batch". The batch size was 1.

                    // Find the most probably label index.


                    var result = output[0];

                    var rshape = result.Shape;

                    if (result.NumDims != 2 || rshape[0] != 1)

                    {

                        var shape = "";

                        foreach (var d in rshape)

                        {

                            shape += $"{d} ";

                        }

                        shape = shape.Trim();

                        Console.WriteLine($"Error: expected to produce a [1 N] shaped tensor where N is the number of labels, instead it produced one with shape [{shape}]");

                        Environment.Exit(1);

                    }


                    // You can get the data in two ways, as a multi-dimensional array, or arrays of arrays, 

                    // code can be nicer to read with one or the other, pick it based on how you want to process

                    // it

                    bool jagged = true;


                    var bestIdx = 0;

                    float p = 0, best = 0;


                    if (jagged)

                    {

                        var probabilities = ((float[][])result.GetValue(jagged: true))[0];

                        for (int i = 0; i < probabilities.Length; i++)

                        {

                            if (probabilities[i] > best)

                            {

                                bestIdx = i;

                                best = probabilities[i];

                            }

                        }


                    }

                    else

                    {

                        var val = (float[,])result.GetValue(jagged: false);


                        // Result is [1,N], flatten array

                        for (int i = 0; i < val.GetLength(1); i++)

                        {

                            if (val[0, i] > best)

                            {

                                bestIdx = i;

                                best = val[0, i];

                            }

                        }

                    }


                    Console.WriteLine($"{Path.GetFileName(file)} 最佳匹配: [{bestIdx}] {best * 100.0}% 标识为:{labels[bestIdx]}");

                }

            }

            Console.ReadKey();

        }


        // Convert the image in filename to a Tensor suitable as input to the Inception model.

        static TFTensor CreateTensorFromImageFile(string file)

        {

            var contents = File.ReadAllBytes(file);


            // DecodeJpeg uses a scalar String-valued tensor as input.

            var tensor = TFTensor.CreateString(contents);


            TFGraph graph;

            TFOutput input, output;


            // Construct a graph to normalize the image

            ConstructGraphToNormalizeImage(out graph, out input, out output);


            // Execute that graph to normalize this one image

            using (var session = new TFSession(graph))

            {

                var normalized = session.Run(

                         inputs: new[] { input },

                         inputValues: new[] { tensor },

                         outputs: new[] { output });


                return normalized[0];

            }

        }


        // The inception model takes as input the image described by a Tensor in a very

        // specific normalized format (a particular image size, shape of the input tensor,

        // normalized pixel values etc.).

        //

        // This function constructs a graph of TensorFlow operations which takes as

        // input a JPEG-encoded string and returns a tensor suitable as input to the

        // inception model.

        static void ConstructGraphToNormalizeImage(out TFGraph graph, out TFOutput input, out TFOutput output)

        {

            // Some constants specific to the pre-trained model at:

            // https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip

            //

            // - The model was trained after with images scaled to 224x224 pixels.

            // - The colors, represented as R, G, B in 1-byte each were converted to

            //   float using (value - Mean)/Scale.


            const int W = 224;

            const int H = 224;

            const float Mean = 117;

            const float Scale = 1;


            graph = new TFGraph();

            input = graph.Placeholder(TFDataType.String);


            output = graph.Div(

                x: graph.Sub(

                    x: graph.ResizeBilinear(

                        images: graph.ExpandDims(

                            input: graph.Cast(

                                graph.DecodeJpeg(contents: input, channels: 3), DstT: TFDataType.Float),

                            dim: graph.Const(0, "make_batch")),

                        size: graph.Const(new int[] { W, H }, "size")),

                    y: graph.Const(Mean, "mean")),

                y: graph.Const(Scale, "scale"));

        }


        /// <summary>

        /// 下载初始Graph和标签

        /// </summary>

        /// <param name="dir"></param>

        static void ModelFiles(string dir)

        {

            string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";


            modelFile = Path.Combine(dir, "tensorflow_inception_graph.pb");

            labelsFile = Path.Combine(dir, "imagenet_comp_graph_label_strings.txt");

            var zipfile = Path.Combine(dir, "inception5h.zip");


            if (File.Exists(modelFile) && File.Exists(labelsFile))

                return;


            Directory.CreateDirectory(dir);

            var wc = new WebClient();

            wc.DownloadFile(url, zipfile);

            ZipFile.ExtractToDirectory(zipfile, dir);

            File.Delete(zipfile);

        }

    }

这里需要注意的是由于需要下载初始Graph和标签,而且是google的站点,所以得使用一些特殊手段。

最终我随便下载了几张图放到bin\Debug\img

 

 然后运行程序,首先确保bin\Debug\tmp文件夹下有tensorflow_inception_graph.pb及imagenet_comp_graph_label_strings.txt。

 

人工智能的魅力非常大,本文只是一个入门,复制上面的代码,你没法训练模型等等操作。所以道路还是很远,需一步一步来。

更多可以查看 https://github.com/migueldeicaza/TensorFlowSharp   及 https://github.com/tensorflow/models 

参考文档:

TensorFlow 官网:https://www.tensorflow.org/get_started/ 

TensorFlow 中文社区:http://www.tensorfly.cn/ 

TensorFlow 官方文档中文版:http://wiki.jikexueyuan.com/project/tensorflow-zh/ 


原文地址: http://www.cnblogs.com/linezero/p/tensorflowsharp.html